# Syllabus of Vtu Chem Engg

Sample donated:
Last updated: March 7, 2019

Fourier series Convergence and divergence of infinite series of positive terms, definition and illustrative examples* Periodic functions, Dirichlet’s conditions, Fourier series of periodic functions of period and arbitrary period, half range Fourier series. Complex form of Fourier Series.

Practical harmonic analysis. Hours UNIT-2 Fourier Transforms Infinite Fourier transform, Fourier Sine and Cosine transforms, properties, Inverse transforms 6 Hours UNIT-3 Application of PDE Various possible solutions of one dimensional wave and heat equations, two dimensional Laplace’s equation by the method of separation of variables, Solution of all these equations with specified boundary conditions. D’Alembert’s solution of one dimensional wave equation. 6 Hours UNIT-4 Curve Fitting and Optimisation Curve fitting by the method : : : 25 03 100 y = ax + b, y = a x 2 + b x + c, = ae bx of least , y = ax b squares- Fitting of curves of the form Optimization: Linear programming, mathematical formulation of linear programming problem (LPP), Graphical method and simplex method. 7 Hours PART-B UNIT-5 Numerical Methods – 1 Numerical Solution of algebraic and transcendental equations: Regula-falsi method, Newton – Raphson method. Iterative methods of solution of a system of equations: Gauss-seidel and Relaxation methods.

Don't use plagiarized sources.
Get Your Custom Essay on "Syllabus of Vtu Chem Engg..."
For You For Only \$13.90/page!

Get custom paper

Largest eigen value and the corresponding eigen vector by Rayleigh’s power method. 6 HoursUNIT-6 Numerical Methods – 2 Finite differences: Forward and backward differences, Newton’s forward and backward interpolation formulae. Divided differences – Newton’s divided difference formula, Lagrange’s interpolation formula and inverse interpolation formula. Numerical integration: Simpson’s one-third, three-eighth and Weddle’s rules (All formulae/rules without proof) 7 Hours UNIT-7 Numerical Methods – 3 Numerical solutions of PDE – finite difference approximation to derivatives, Numerical solution of two dimensional Laplace’s equation, one dimensional heat and wave equations 7 Hours UNIT-8 Difference Equations and Z-Transorms Difference equations: Basic definition; Z-transforms – definition, standard Z-transforms, damping rule, shifting rule, initial value and final value theorems.

Inverse Z-transform. Application of Z-transforms to solve difference equations. 6 Hours Note: * In the case of illustrative examples, questions are not to be set. Text Books: 1. B. S.

Grewal, Higher Engineering Mathematics, Latest edition, Khanna Publishers. 2. Erwin Kreyszig, Advanced Engineering Mathematics, Latest edition, Wiley Publications. Reference Books: 1. B.

V.Ramana, Higher Engineering Mathematics, Latest edition, Tata Mc. Graw Hill Publications. 2. Peter V. O’Neil, Engineering Mathematics, CENGAGE Learning India Pvt Ltd. Publishers. MOMENTUM TRANSFER Subject Code No.

of Lecture Hours/Week Total No. of Lecture Hours : 10CH32 : 04 : 52 PART – A UNIT 1: Fluid Statics and its Applications: Concept of unit operations, Concept of Momentum Transfer, Nature of fluids and pressure concept, Variation of pressure with height – hydrostatic equilibrium, Barometric equation, Measurement of fluid pressure – manometers. Continuous gravity decanter, Centrifugal decanter.

Hours UNIT 2: Fluid flow phenomena: Types of fluids – shear stress and velocity gradient relation, Newtonian and non – Newtonian fluids, Viscosity of gases and liquids. Types of flow – laminar and turbulent flow, Reynolds stress, Eddy viscosity. Flow in boundary layers, Reynolds number, Boundary layer separation and wake formation. 6 Hours UNIT 3: Basic equations of fluid flow: Average velocity, Mass velocity, Continuity equation, Euler and Bernoulli equations, Modified equations for real fluids with correction factors. Pump work in Bernoulli equation.Angular momentum equation.

6 Hours UNIT 4: Flow of incompressible fluids in conduits and thin layer: Laminar flow through circular and non-circular conduits. Hagen Poiseuille equation, Laminar flow of non-newtonian liquids, Turbulent flow in pipes and closed channels, Friction factor chart. Friction from change in velocity or direction.

Form friction losses in Bernoulli equation. Flow of fluids in thin layers. 6 Hours PART – B UNIT 5: Flow of compressible fluids: Continuity equation, Concept of Mach number, Total energy balance, Velocity of sound, Ideal gas equations.Flow through variable-area conduits. Adiabatic frictional flow.

Isothermal frictional flow (elementary treatment only). 6 Hours 2 IA Marks Exam Hours Exam Marks : 25 : 03 : 100 UNIT 6: Flow of fluid past immersed bodies: Drag, Drag coefficient, Pressure drop – Kozeny-Carman equation, Blake-Plummer, Ergun equation, Fluidizaion, Conditions for fluidization, Minimum fluidization velocity, Types of fluidization, 4 Hours Metering of fluids: Pipes, Fitting and valves, Measurement of liquid and gas flow rates by orifice meter, venturi meter, rotameter and pitot tube. Hours UNIT 7: Flow through open channels – weirs and notches.

2 Hours Transportation of fluids: Elementary concept of target meter, vortex shedding meters, turbine meters, positive displacement meters, magnetic meters, coriolis meters and thermal meters. Performance and characteristics of pumps – positive displacement and centrifugal pumps. Fans, compressor and blowers.

6 Hours UNIT 8: Dimensional analysis: Dimensional homogeneity, Rayleigh’s and Buckingham’s II – methods. Significance of different dimensionless numbers.Elementary treatment of similitude between model and prototype.

4 Hours Introduction to unsteady state flow: Time to empty the liquid from a tank. 2 Hours Text Books: 1. Unit Operations of Chemical Engineering, McCabe.

W. L. , et. al.

6th edn. , McGraw Hill, New York, 2001. 2. Engineering Fluid Mechanics, Kumar K.

I. ,3rd Edition, Eurasia Publishing House (p) Ltd. , New Delhi,1984.

Reference Books: 1. Chemical Engineering, Vol. 1. , Coulson J.

II and Richardson. J. F.. , 5th edn. , Asian Books (p) Ltd.

, New Delhi, 1998. 2. Introduction to Chemical Engineering, Badger.W. I. , and Banchero J.

T. , Tata McGraw Hill, New York, 1997. CHEMICAL PROCESS CALCULATIONS Subject Code No.

of Lecture Hours/Week Total No. of Lecture Hours : 10CH33 : 04 : 52 PART – A UNIT 1: Units and dimensions: Fundamental and derived units, Conversion. Dimensional consistency of equations. Dimensionless groups and constants. Conversion of equations. 6 Hours UNIT 2: Basic chemical calculations: Concept of mole, mole fraction. Compositions of mixtures of solids, liquids and gases.

Concept of normality, molarity, molality, ppm.Use of semi-log, loglog, triangular graphs. Ideal gas law calculations, 6 Hours UNIT 3: Vapour pressure concepts, humidity, humidity chart, humidification and dehumidification, calculation of humidity. 7 Hours 3 IA Marks Exam Hours Exam Marks : 25 : 03 : 100 UNIT 4: Material balance without reaction: General material balance equation for steady and unsteady state.

Typical steady state material balances in distillation, absorption, extraction, crystallization, drying. 7 Hours PART – B UNIT 5: Steady state material balance for mixing and evaporation.Elementary treatment of material balances involving bypass. Recycle and purging. 6 Hours UNIT 6: Steady state material balance with reaction: Principles of stoichiometry, Concept of limiting and excess reactants and inerts, fractional and percentage conversion, fractional yield and percentage yield, selectivity, related problems.

7 Hours UNIT 7: Ultimate and proximate analyses of fuels, Calculations involving combustion of solid, liquid and gaseous fuels, excess air. 6 Hours UNIT 8: Energy balance: General steady state energy balance equation, Thermo physics.Thermo chemistry and laws.

Heat capacity. Enthalpy, Heat of formation, Heat of reaction, Heat of combustion and Calorific values. Heat of solution. Heat of mixing, Heat of crystallization. Determination of ? Hr at standard and elevated temperatures, flame temperature. 7 Hours Text Books: Stoichiometry (SI Units), Bhatt B. L.

and Vora S. M, Third Edition, Tata McGraw Hill Publishing Ltd. , New Delhi, 1996. 2. Chemical Process Principles Part – I Material and Energy Balances, Hougen O. A.

, Waston K. M. and Ragatz R. A. 2nd Edition, CBS publishers and distributors, New Delhi, 1995. 3. Basic Principles and Calculations in Chemical Engineering, Himmelblau D.

M. , 6th Edition, Prentice Hall of India, New Delhi, 1997. 1. TECHNICAL CHEMISTRY Subject Code No. of Lecture Hours/Week Total No. of Lecture Hours : 10CH34 : 04 : 52 PART – A UNIT 1: IA Marks Exam Hours Exam Marks : 25 : 03 : 100 4 Colligative properties: Concept of mole and mole fraction. Colligative properties – Meaning and types, Lowering of vapour pressure, Raoult’s law – statement, limitations.

Determination of molecular weight by lowering of vapour pressure, problems. Ostwald’s and Walker’s method, Elevation in boiling point of a solvent – derivation, Experimental determination of molecular weight by ebulliscopic method, problems. Isotonic solutions – abnormal molecular weight. Osmosis and Osmotic pressure – Explanation of the terms, effect of concentration and temperature and simultaneous effect of concentration and temperature on osmotic pressure. Determination of molecular weight – Berkeley and Hartley’s method and problems.

Hours UNIT 2: Principles of valence bond theory and molecular orbital theory: Introduction to chemical bonding – Formation of ionic bond, covalent bond and co-ordinate bond with examples; Energies of covalent bond formation, Valence bond theory – postulates and explanation, Types of covalent bonds: -? and -? bonds; Molecular orbital theory – postulates, Linear combination of atomic orbitals (LCAO), conditions for effective combination of atomic orbitals. Molecular orbital configuration of simple molecules (H2 and He2); Similarities and distinctions between valence bond theory and molecular orbital theory; Polar and non polar covalent bonds. Hours UNIT 3: Surface chemistry: Introduction, Types of adsorption – Physisorption and chemisorption, adsorption isotherm, isobar, isotere, Langmuir adsorption isotherm, BET isotherm, BET equation for surface area, Langmuir-Hinshelwood, and Langmuir-Rideal mechanisms, kinetic effects of surface heterogeneity, surface inhibition and activation energies, unimolecular and bimolecular surface reactions, reactions between two adsorbed molecules, Transition state theory of surface reactions, Mechanism of chemisorption and rates of chemisorption and desorption.

Hours UNIT 4: Catalysis: Basic principles, classification of catalytic systems; Homogeneous catalysis: Homogeneous catalysis involving gases, Homogeneous catalysis in the liquid phase with examples including Wilkinson’s catalyst; Heterogeneous catalysis- Explanation with examples including Ziegler-Natta catalyst; Mechanism of acid-base catalysis, Catalytic reactionsHydrogenation, transfer hydrogenation, hydroformylation, isomerization, Wacker’s processacetic acid from ethylene; Negative catalysis and its mechanism. Hours PART – B UNIT 5: Dyes: Colour and constitution – chromophore, and auxochrome theory , modern theory of colour, classification of dyes – by structure and by methods of application. Synthesis of dyes Methyl orange, Congo red, Malachite green, Indigo and Alizarin. Hours UNIT 6: Reaction mechanism: Concept of reactive intermediates- carbanions, carbocations, inductive and resonance effects; Mechanism of nucleophilic substitution (SN1 and SN2) in alkyl halides; Mechanistic concept of elimination reactions (E1 and E2); Mechanism of electrophilic substitution in benzene – Nitration, sulphonation, halogenation, Friedel-Crafts alkyl and acylation reactions; Electronic interpretation of orienting influences of substituents in romatic electrophilic substitution of toluene, chlorobenzene, phenol and nitrobenzene. 7 Hours 5 UNIT 7: Insecticides: Definition, classification – i) Internal or Stomach insecticide ii) External or Contact Insecticides iii) Fumigants – Explanation with examples; Organic insecticides – DDT, Chlordane, Nitrophenol, BHC (Gammexane), Aldrin, Schradan, Parathion, Malathion and Baygon – synthesis and their applications; Rodenticides, Fungicides, and Herbicides – Definition, examples and their applications. Hours UNIT 8: Oils and fats-Vegetable oils- Examples; Analysis of oils- Saponification value,iodine value and acid value – their determination, Extraction of oils- Solvent extraction, Refining of oils, Hydrogenation – manufacture of Vanaspati. Soaps and detergents – Manufacture of soap by hot process; Types of soaps – Liquid soap, Toilet soaps-opaque and transparent; Mechanism of cleansing action of soap; Synthetic detergents– Ionic detergents-anionic and cationic; Nonionic detergents-Manufacture.

6 Hours Text Books: 1. 2. Organic Chemistry, Morrision B. R.

nd Boyd L. L. , 6th Edition, ELBS, New Delhi, 1999.

Physical Chemistry, Puri L. R. and Sharma B. R. , 14th Edition, Chand S. and Co.

, New Delhi, 1998. Reference Books: 1. 2. 3. 4. 5. 6.

7. 8. Modern Synthetic Reactions, House, H. O.

, ULBS Publishers, New Delhi. Organic Reactions Mechanism, Sykes Peter, 2nd Edition, ULBS Publishers, New Delhi, 2003. Organic Chemistry, Finar, Vol 1 and 2, ULBS Publishers, New Delhi. Industrial Chemistry, Sharma B.

K. , 11th Edition, Chand S. and Co. New Delhi, 2001. Organic Chemistry, Tiwari Melhrotra and Vishnoi, 7th edition, Chand S. nd Co.

, New Delhi, 1996. A Text Book of Organic Chemistry, Arun Bahl and Bahl B. S. , 15th Edition, S. Chand and Company, New Delhi, 1998. Surface Chemistry: Theory and applications, J. J. Bikerman, 2nd Edition, Academic press, New York, 1972.

Physical Chemistry of Surfaces, A. W. Adamson, 3rd Edition, Interscience publishers Inc. , New York, 1960.

MECHANICAL OPERATIONS Subject Code No. of Lecture Hours/Week Total No. of Lecture Hours : 10CH35 : 04 : 52 PART – A UNIT 1: Particle technology: Particle shape, particle size, different ways f expression of particle size, shape factor, sphericity, standard screen, screens – ideal and actual screens, differential and cumulative size analysis, specific surface of mixture of particles, Number of particles in a mixture, effectiveness of screen, 5 Hours UNIT 2: 6 IA Marks Exam Hours Exam Marks : 25 : 03 : 100 Industrial screening equipment, Motion of screen, Grizzly, Gyratory screen, Vibrating screen, Trommels, Sub sieve analysis – Air permeability method, Sedimentation and elutriation methods. Hours UNIT 3: Size reduction: Introduction – Types of forces used for comminution, Criteria for communition, characteristics of comminuted products, Laws of size reduction, Work Index, Energy utilization, Methods of operating crushers – Free crushing, Choke feeding, Open circuit grinding, Closed circuit grinding, Wet and dry grinding, Equipment for size reduction – Blake jaw crusher, Gyratory crusher, Smooth roll crusher, Toothed roll crusher, Impactor, Attrition mill, Ball mill, Critical speed of ball mill, Ultra fine grinders, Fluid energy mill, Colloid mill, Cutters – Knife cutter. Hours UNIT 4: Motion of particles through fluids: Mechanics of particle motion, equation for one dimensional motion of particles through a fluid in gravitational and centrifugal field, Terminal velocity, Drag coefficient, Motion of spherical particles in Stoke’s regime, Newton’s regime and Intermediate region, Criterion for settling regime, Hindered settling, Modification of equation for hindered settling, Sedimentation: Coe and Clevenger theory, Kynch theory, Batch settling test, Application of batch settling test, Determination of thickener area. Hours PART – B UNIT 5: Filtration: Introduction, Classification of filtration, Cake filtration, Clarification, Batch and continuous filtration, pressure and vacuum filtration, Constant rate filtration, characteristics of filter media, industrial filters, sand filter, Filter press, leaf filter, Rotary drum filter, Horizontal belt filter, Bag filter, Centrifugal filtration – Suspended batch centrifuge, Filter aids, Application of filter aids.

Hours UNIT 6: Agitation and mixing: Application of agitation, Agitation equipment, Types of impellers – Propellers, Paddles and Turbines, Flow patterns in agitated vessels, Prevention of swirling, Standard turbine design, Power correlation and power calculation, Mixing of solids, Types of mixers – Change can mixers, Muller ixers, Mixing index, Ribbon blender, Internal screw mixer, Tumbling mixer. 6 Hours UNIT 7: Sampling, storing and conveying of solids: Sampling of solids, storage of solids, Open and closed storage, Bulk and bin storage, Conveyors – Belt conveyor, Chain conveyor, Apron conveyor, Bucket conveyor, Bucket elevator, Screw conveyor, Slurry transport, Applications of fluidization, Pneumatic conveying. Hours UNIT 8: Miscellaneous separation: Magnetic separation, electrostatic separation, Jigging, Heavy media separation, Froth floatation process, Additives used during floatation, Floatation cells, Typical floatation circuits, Size enlargement (only principle and equipment) – Flocculation, Briquetting, Pelletization, Granulation, Settling chambers, Centrifugal separators, Cyclones and Hydro cyclones, Electrostatic Separator, Venturi scrubber. 7 Hours Text Books: 7 Unit Operations of Chemical Engineering, McCabe W.L. , et. al.

, V Edn. , McGraw Hill International, New york, 2000. 2.

Introduction to Chemical Engineering, Badger, W. L. and Banchero J. T, 3rd Edition, McGraw Hill International Edition, Singapore, 1999.

3. Coulson and Richardson’s Chemical Engineering Vol. 2 Particle Technology and Separation Processes, Coulson J. M. and Richardson J. F. , 4th Edition, Asian Books Pvt.

Ltd, New Delhi, 1998. Reference Books: Unit Operations, Brown. G. G. et. al. , 1st Edition, CBS Publishers, New Delhi, 1995.

Perry’s Chemical Engineers’ Handbook, Perry R and Green W. D. , 1st Edition, McGraw Hill International, New York, 2000. 3. Principles of Unit Operations, Foust A. S. et.

al. , 3rd Edition, John Wiley and Sons, New York, 1977. 1.

2. COMPUTER AIDED CHEMICAL EQUIPMENT DRAWING Subject Code No. of Practical Hours/Week Total No. of Hours : 10CH36 : 03 : 39 IA Marks Exam Hours Exam Marks : 25 : 03 : 50 1. Sectional views: Representation of the sectional planes, Sectional lines and hatching, selection of section planes and types of sectional views.

Hours Proportionate drawing of process equipment: Equipment and piping symbols, Vessel component; Vessel opening, Manholes, Vessel enclosures, Vessel support, Jackets, Shell and 12 Hours tube heat exchanger, Reaction vessel and Evaporator. Assembly drawing: (i) Joints: Cotter joint with sleeve, cotter joint, Socket and Spigot joint, Flanged pipe joint, Union joint, Stuffing box and Expansion joint (Screw type or Flanged type). (ii) Valves: Stop valve, Globe valve, Stop cock and Gate valve, Screw down Stop valve, Rams Bottom safety valve, Non-return valve. iii) Pumps: Centrifugal pump, Gear pump. 21 Hours Note: 1. Assignments to be given to students to practice all the drawings and weightage shall be given to these assignments while awarding IA marks. 2. Examination consists of one question on proportionate drawing (15 marks) and one question on Assembly drawing (35 Marks).

Weightage must be given for proportionate sketching drawn on paper. Software: Solid Edge or Equivalent Software Text Books: 1. Machine Drawing, Gopal Krishna, 9th Edition, K. R, Subhas Stores, Bangalore 1995. 2. Machine Drawing, Bhatt, N. D.

29th Edition, Charotar Publishing House, Anand, 1995. 3. Process Equipment Design, Joshi, M. V. , 3rd Edition, Macmillian India publication”, New Delhi, 2000. Reference Books: 1. Chemical Process Equipment, Walas, S.

M. , Butterworth Heinemann Pub. 1999. 2. Applied Process Design, Ludwig E. E.

, 3rd Edition, Gulf Professional Publising, New Delhi, 1994. 8 MOMENTUM TRANSFER LAB Subject Code No. of Practical Hours/Week Total No.

of Hours : 10CHL37 : 03 : 39 IA Marks Exam Hours Exam Marks : 25 : 03 : 50 The experiment should be based on the following topics; 1. 2. 3. 4. 5. 6. 7. 8.

9. 10. 11. 2. 13. 14. Friction in circular pipes Friction in non circular pipes Friction in helical / spiral coils Flow rate measurement using venturi / orifice meters (incompressible fluid) Local velocity measurement using pitot tube Flow over notches Hydraulic coefficients – open orifice Packed bed Fluidized bed Characteristics for centrifugal pump Study of various pipe fittings and their equivalent lengths Compressible fluid flow measurement using venturi / orifice meters Reynolds apparatus Air lift pump Note: Minimum of 10 experiments are to be conducted. TECHNICAL CHEMISTRY LAB – I Subject Code No.

f Practical Hours/Week Total No. of Hours : 10CHL38 : 03 : 39 IA Marks Exam Hours Exam Marks : 25 : 03 : 50 The experiment should be based on the following topics; 1. 2.

3. 4. 5. 6. 7.

8. 9. Estimation of HCl and CH3COOH in a given acid mixture conductometrically. Determination of sulphate and nitrate in the given sample of water using Nephelometer and spectrophotometer. Determination of chloride content in the given sample of water using N/40 AgNO3 solution and KCl crystals. Determination of partition coefficient of iodine between water and carbon tetrachloride.

Study of kinetics of the reaction between K2S2O8 and KI. Determination of percentage of nitrogen in ammonium fertilizers, using 1 N NaOH solution and standard HCl solution. Determination of percentage composition of binary mixture using Ostwald’s viscometer. Effect of salt on the critical solution temperature of phenol-water system. Determination of molecular weight of a non-volatile solute by elevation in boiling point. (Using McCoy’s apparatus). 9 10. 11.

12. Determination of nickel as nickel dimethylglyoximate gravimetrically (after separating iron) in the given stainless steel solution.Determination of iron as ferric oxide gravimetrically (after separating copper) in the given chalcopyrites ore solution. Determination of zinc in the given brass solution volumetrically (after separating copper). Note: Minimum of 10 experiments are to be conducted. ENGINEERING MATHEMATICS – IV Sub Code Hrs/ Week Total Hrs.

: : : 10MAT41 04 52 IA Marks Exam Hours Exam Marks : : : 25 03 100 PART-A UNIT-1 Numerical Methods- 1 Numerical solution of ordinary differential equations of first order and first degree; Picard’s method, Taylor’s series method, modified Euler’s method, Runge-kutta method of fourth-order.Milne’s and Adams – Bashforth predictor and corrector methods (No derivations of formulae). 6 Hours UNIT-2 Numerical Methods – 2 Numerical solution of simultaneous first order ordinary differential equations: Picard’s method, Runge-Kutta method of fourth-order.

Numerical solution of second order ordinary differential equations: Picard’s method, Runge-Kutta method and Milne’s method. 6 Hours UNIT-3 Complex variables – 1 Function of a complex variable, Analytic functions-Cauchy-Riemann equations in cartesian and polar forms. Properties of analytic functions.

Application to flow problems- complex potential, velocity potential, equipotential lines, stream functions, stream lines. 7 Hours UNIT-4 Complex variables – 2 Conformal Transformations: Bilinear Transformations. Discussion of Transformations: 7 Hours w = z 2 , w = e z , w = z + ( a 2 / z ) . Complex line integrals- Cauchy’s theorem and Cauchy’s integral formula. PART-B UNIT-5 Special Functions Solution of Laplace equation in cylindrical and spherical systems leading Bessel’s and Legendre’s differential equations, Series solution of Bessel’s differential equation leading to Bessel function of first kind.Orthogonal property of Bessel functions. Series solution of Legendre’s differential equation leading to Legendre polynomials, Rodrigue’s formula. 7 Hours 10 UNIT-6 Probability Theory – 1 Probability of an event, empherical and axiomatic definition, probability associated with set theory, addition law, conditional probability, multiplication law, Baye’s theorem.

6 Hours UNIT-7 Probability Theory- 2 Random variables (discrete and continuous), probability density function, cumulative density function. Probability distributions – Binomial and Poisson distributions; Exponential and normal distributions. Hours UNITSampling Theory Sampling, Sampling distributions, standard error, test of hypothesis for means, confidence limits for means, student’s t-distribution. Chi -Square distribution as a test of goodness of fit 6 Hours Text Books: 1. B. S. Grewal, Higher Engineering Mathematics, Latest edition, Khanna Publishers 2. Erwin Kreyszig, Advanced Engineering Mathematics, Latest edition, Wiley Publications.

Reference Book: 1. B. V. Ramana, Higher Engineering Mathematics, Latest edition, Tata Mc. Graw Hill Publications. 2.

Peter V.O’Neil, Engineering Mathematics, CENGAGE Learning India Pvt Ltd. Publishers. MATERIAL SCIENCE Subject Code No. of Lecture Hours/Week Total No. of Lecture Hours : 10CH42 : 04 : 52 PART – A UNIT 1: Introduction: Introduction to material science, classification of engineering materials, Level of structure, Structure property relationships in materials. 2 Hours Crystal Geometry And Structure Determination Geometry of crystals-the Bravais lattices, Crystal directions and planes-the miller indices, Structure determination-X-Ray diffractionBragg law, The powder method, Scanning electron microscope. Hours UNIT 2: Atomic Structure, Chemical Bonding And Structure Of Solids: Structure of atom, Periodic table, Ionization potential, Electron affinity and electro-negativity, Primary and secondary bonds, Variation of bonding character and properties, Covalent solids, Metals and alloys, Ionic solids, Structure of silica and silicates, Polymers.

6 Hours UNIT 3: Crystal Imperfections: Point imperfections, Line imperfections-edge and screw dislocations, Surface imperfections. Hours UNIT 4: Phase Diagram and Phase Transformations: Phase rule, Single component systems, Binary phase diagrams, Lever rule, Typical phase diagrams for Magnesia-Alumina, Copper-Zinc, Iron – Carbon systems, Nucleation and growth, solidification, Allotropic transformation, Cooling curve for pure iron, Iron-carbon equilibrium diagram, Isothermal transformations (TTT Curves), Eutectic, Eutectoid, Peritectic, Peritectoid reactions. 8 Hours 11 IA Marks Exam Hours Exam Marks : 25 : 03 : 100 PART – B UNIT 5: Deformation of Materials and Fracture: Elastic deformation,Plastic deformation, Creep, Visco-elastic deformation, Different types of fracture. 7 Hours UNIT 6: Heat Treatment: Annealing Normalizing, Hardening, Martempering, Austempering, Hardenability, Quenching, Tempering, Carburising, Cyaniding, Nitriding, Flame hardening. 6 Hours UNIT 7: Corrosion and its Prevention: Direct corrosion, Electro-chemical corrosion, Galvanic cells, High temperature corrosion, Passivity, Factor influencing corrosion rate, Control and prevention of corrosion-modification of corrosive environment, Inhibitors, Cathodic protection, Protective coatings, glass lining, lead lining, FRP lining.

Hours UNIT 8: Typical Engineering Materials: Ferrous metals, Non ferrous metals and alloys – Aluminium and its alloys, Copper and its alloys, Lead and its alloys, Tin, Zinc and its alloys, Alloys for high temperature service, Ceramic materials – Structure of ceramics, Polymorphism, Mechanical, electrical and thermal properties of ceramic phase. 8 Hours Text Books: 1. Materials Science and Engineering – A First Course, Raghavan V, 3rd Edn. , Prentice Hall of India Pvt. Ltd. , New Delhi, 1996. 2.

Material Science and Processes, Hajra Choudhury S. K. , 2nd Edition, Indian Book Distributing Co.

1982. Reference Books: 1. Elements of Material Science, Van Valck H.

L. , 2nd Edn. , Addision – Wesly Publishing Company, New York, 1964.

CHEMICAL ENGINEERING THERMODYNAMICS Subject Code No. of Lecture Hours/Week Total No. of Lecture Hours : 10CH43 : 04 : 52 PART – A UNIT 1: Basic Concepts: System, surrounding and Processes, Closed and Open systems, State and Properties, Intensive and Extensive Properties, State and Path functions, Equilibrium state and Phase rule, Zeroth law of thermodynamics, Heat reservoir and Heat engines, Reversible and Irreversible processes.

First Law of Thermodynamics: General statement of First law of thermodynamics, First law of cyclic process and non – flow processes, Heat capacity. Derivation for closed system & steady state flow process-flow calorimeter & heat capacity. 6 Hours UNIT 2: P-V-T Behaviour: P-V-T behaviour of pure fluids, Equations of state and ideal gas law, Processes involving ideal gas law: Constant volume, constant pressure, constant temperature, adiabatic and polytropic processes. Equations of state for real gases: Vander Waals equation, 12 IA Marks Exam Hours Exam Marks : 25 : 03 : 100Redlich – Kwong equation, Peng – Robinson equation, Virial equation. Compressibility charts: Principles of corresponding states, Generalized compressibility charts: Principles of corresponding states, Generalized compressibility charts. Thermodynamics diagrams. 6 Hours UNIT 3: Second law of thermodynamics: General statements of the Second law, concept of Entropy, The Carnot Principle, Calculation of entropy changes, Clausius Inequality, Entropy and Irreversibility, Third law of thermodynamics.

Hours UNIT 4: Thermodynamic Properties of Pure Fluids: Reference Properties, Energy Properties, Derived Properties, Work function, Gibbs free energy, Relationships among thermodynamic properties: Exact differential equations, Fundamental property relations, Maxwell’s equations, Clapeyron equations, Entropy heat capacity relations, Modified equations for Internal energy and enthalpy, Effect of temperature on internal energy, enthalpy, and entropy, Relationships between CP and CV, GibbsHelmholtz equation. 8 HoursPART – B UNIT 5: Properties of Solutions: Partial molar properties, Chemical potential, Fugacity in solutions, Henry’s law and dilute solutions, Activity in solutions, Property changes of mixing, excess properties. (Qualitative treatment) Activity & activity coefficient. 7 Hours UNIT 6: Phase Equilibria: Criteria of phase equilibria, Criterion of stability, Duhem’s theorem, Vapour – Liquid Equilibria, VLE in ideal solutions, Non-Ideal solutions, VLE at low pressures, VLE at high pressures, Consistency test for VLE data, Calculation of Activity coefficients using Gibbs – Duhem equation, Liquid-Liquid equilibrium diagrams. Hours UNIT 7: VLE Correlations Equations: Van Laar, Margules, and Willson equations.

6 Hours UNIT 8: Chemical Reaction Equilibria: Reaction Stoichiometry, Criteria of chemical reaction equilibrium, Equilibrium constant and standard free energy change, Effect of temperature, pressure on equilibrium constants and other factors affecting equilibrium conversion, Liquid phase reactions, Heterogeneous reaction equilibria, phase rule for reacting system. 7 Hours Text Books: 1. Introduction to Chemical Engineering Thermodynamics, Smith J. M.

and Vanness H.C. , Fifth edition, McGraw Hill, New York, 1996. 2. Chemical Engineering Thermodynamics, Rao, Y. V. C. , New Age International Publication, Nagpur, 2000.

3. Textbook of Chemical Engineering Thermodynamics, Narayanan, K. V. , 8th Edition, Prentice Hall of India Private Limited, New Delhi, 2001.

PROCESS HEAT TRANSFER Subject Code No. of Lecture Hours/Week Total No. of Lecture Hours : 10CH44 : 04 : 52 IA Marks Exam Hours Exam Marks : 25 : 03 : 100 13 PART – A UNIT 1: Introduction: Various modes of heat transfer Viz. Conduction, Convection and Radiation.Conduction: Fouriers law, Steady state unidirectional heat flow through single and multiple layer slabs, Cylinders and spheres for constant and variable thermal conductivity. 8 Hours UNIT 2: Insulation: Properties of insulation materials, Types of insulation, Critical and Optimum thickness of insulation.

4 Hours Extended Surfaces: Fins – Types of fins, Derivation of fin efficiency for longitudinal fins, Fin effectiveness. 2 Hours UNIT 3: Elementary treatment of unsteady state heat conduction. 2 Hours Convection: Individual and overall heat transfer coefficient, LMTD, LMTD correction factor. Hours UNIT 4: Dimensionless numbers, – Dimensional analysis, Empirical correlation for forced and natural convection. 6 Hours PART – B UNIT 5: Analogy between momentum and heat transfer – Reynolds, Coulburn and Prandtl analogies. Heat Transfer with Phase Change: Boiling phenomena, Nucleate and film boiling, Condensation – Film and Drop wise condensation, Nusselts equations. 5 Hours UNIT 6: Heat Transfer Equipment: Double pipe heat exchangers, Shell and tube heat exchangers – Types of shell and tube heat exchangers, Construction details, Condenser – types of condensers.

Hours UNIT 7: Design of Heat Transfer Equipment: Elementary design of double pipe heat exchanger, shell and tube heat exchanger and condensers. 4 Hours Evaporators: Types of evaporators, performance of tubular evaporator – Evaporator capacity, Evaporator economy, Multiple effect evaporator. 5 Hours UNIT 8: Radiation: Properties and definitions, Absorptivity, Reflectivity, Emissive power and intensity of radiation, Black body radiation, Gray body radiation, Stefen – Boltzmann law, Wien’s displacement law, Kirchoffs law, View factors, Radiation between surfaces- different shapes, Radiation involving gases and vapours, Radiation shields. Hours Text Books: 1. 2. Process Heat Transfer, Kern D. Q. , Mc Graw Hill.

, 18th Reprint, 2008. Unit Operations of Chemical Engineering, McCabe, W. L. , et. al, 5th Edn, McGraw Hill, New York 2000. 3. Unit Operations of Chemical Engineering, Coulsion J. M.

and Richardson J. F. , Vol. 1, 5th Edn, Chemical Engineering Pergamon and ELBS, McGraw Hill, New York 2000.

14 Reference Book: 1. Heat Transfer, Rao. , Y.

V. C. , 1st Edn. , University Press (India) Ltd. , New Delhi, 2000. COMPUTATIONAL METHODS Subject Code No.

of Lecture Hours/Week Total No. f Lecture Hours : 10CH45 : 04 : 52 PART – A UNIT 1: Algorithms and C Programs – Simultaneous linear algebraic equation: Jacobi and GuassSeidel, Jordan iterative methods (material balances etc). Non-linear algebraic equation: Newton Raphson Method, Modified Newton Raphson, Method of False Position (Molar Volume of non-ideal gases, Settling velocity, heat loss from pipes, vapor pressure estimation etc). 7 Hours UNIT 2: Interpolation: Newton-Gregory Forward and Backward Interpolation, Lagrange’s Interpolation formula, Newton divided difference interpolation formula. Estimation of thermo-physical properties). 6 Hours UNIT 3: Numerical Integration: Gaussian Quadrature, Trapezoidal Rule and Simpson’s 1/3 rule and 6 Hours 3/8 rule. (Solutions of Rayleigh’s equation, average heat capacity equation, batch/PFR design equation) UNIT 4: Ordinary differential equations: Euler and Modified Euler method, Runge-Kutta method of Fourth order, (rate equations Solution of Boundary Value problems, Finite difference method.

(Temperature calculations at nodes on flat slab and pipes etc). 7 Hours IA Marks Exam Hours Exam Marks : 25 : 03 : 100PART – B UNIT 5: Curve fitting by the method of Least Squares linear. (Heat capacity vs temperature, f vs Nre, Arrhenius equation, settling velocity vs Diameter of particle etc). 6 Hours UNIT 6: P – X,Y and T – X,Y evaluation for binary mixtures: Calculation of Bubble Pressure and Bubble Point. Dew Pressure and Dew point for Ideal Binary and multi-component system. Flash Vaporization for multi-component system. (Algorithm and C Program). 7 Hours UNIT 7: Solution of Design Equations: Adiabatic Batch Reactor, PFR, CSTR.

Adiabatic Flame Temperature (Algorithm and C Program). Hours UNIT 8: Design : Double pipe Heat Exchanger (Area, Length and Pressure drop). Shell & Tube Heat Exchanger (Area, Number of tubes, Pressure drop) (Algorithm and C Program). 7 Hours 15 Text Books: 1. Computer Oriented Numerical Methods, V.

Rajaraman, 2nd Edition, Prentice Hall of India, 1981. 2. Applied Mathematics in Chemical Engineering, Mickley, Sherwood, and Reed, 2nd Edition, Tata McGraw Hill, 1990. Reference Books: 1.

Numerical methods of Engineering and Science, B. S. Grewal, Khanna Publishers 2. Advanced Modern Engineering Mathematics, Glyn James, PearsonEducation,3rd Edition. . Probability and Statistics with Reliability, Queing and Computer Applications, Trivedi K. S. , Prentice Hall of India.

INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS Subject Code No. of Lecture Hours/Week Total No. of Lecture Hours : 10CH46 : 04 : 52 PART – A UNIT 1: General Introduction To Spectroscopy: Types of spectroscopy, representation of a spectrum, nature and interaction of electromagnetic radiation, energies corresponding to various kinds of radiations, atomic and molecular transitions, selection rules, spectral width, factors influencing positions and intensity of spectral lines. Hours Electronic Spectroscopy: Quantitative aspects of absorption measurements – Beer Lambert’s law- definition, derivation and its limitations, terminology associated with electronic spectroscopy-(Molar absorptivity, bathochromic effect, hypsochromic effect) types of absorption bands and theoretical interpretation, effect of solvent and structure on max-. polar and non polar solvents, various electronic transitions, effect of solvent on the energy of n ? * ? * transitions, Woodward – Fieser rules for calculating max of ? * transitions, and Instrumentation- Source, monochromator- entrance and exit slits, mirror, dispersion, detector.Qualitative and Quantitative analysis, structure determination- based on bonding, electron transitions and group frequencies.

4 Hours UNIT 2: Infrared Spectroscopy: Introduction – Regions of infrared region spectrum, Requirement of IR absorption (selection rule) – correct wavelength of radiation and change in electric dipole moment of a molecule. Theory of IR absorption. Types of vibrations – Stretching vibrations – symmetrical stretching and antisymmetrical stretching and Bending vibrations – scissoring, rocking, wagging and twisting vibrations. Fundamental modes of vibrations – Linear and non linear molecules.

Factors affecting the group frequencies – coupled interactions, electronic effects and hydrogen bonding. Instrumentation – IR radiation source, monochromator, and detectors. FTIR Instrument and its advantages, sample handling techniques – solution, nujol mull and KBr pellet..

Characteristic group infrared absorption for organic molecules. Applications of IR to structural elucidation of simple organic molecules. 7 Hours UNIT 3: 16 IA Marks Exam Hours Exam Marks : 25 : 03 : 100 Nuclear Magnetic Resonance Spectroscopy: The nuclear spin, Larmor precession, the NMR isotopes, energy levels for a nucleus with spin quantum number I = ? 3/2 and 5/2, theory of population of nuclear spin levels, spin-spin and spin-lattice relaxation, chemical shift – definition, causes, measurement and advantages of TMS as a reference compound, factors affecting chemical effect, shielding and deshielding mechanisms, correlation of chemical shifts with chemical environment – aliphatic, alkenic, alkynic, aldehydic, ketonic, aromatic, alcoholic, phenolic, carboxylic, amino protons, spin – spin coupling, spin – spin splitting, intensity ratio of multiplet- Pascal’s triangle method, chemical exchange, effect of deuteration, classification of spin systems (AX, AMX, AB, ABC), first order spectra, low and high resolution spectra, determination of peak areas, coupling constants-short and long range couplings, introduction to 13 C spectra of simple molecules. Hours UNIT 4: Mass Spectrometry: Introduction, basic principles, instrumentation, methods of generating positively charged ions – electron impact, chemical ionization, field desorption, and fast atom bombardment techniques, mass analysers – types, resolving power, molecular ion peak, base peak, metastable peak and isotopic peak, modes of fragmentation, factors affecting fragmentation, mass spectral fragmentation of organic compounds – aromatic compounds, alcohols, carbonyl compounds, carboxylic acids, esters, McLafferty rearrangement, determination of molecular weight and molecular formula, nitrogen and ring rule. 5 Hours PART – B UNIT 5: Flame Photometry and Atomic Absorption Spectroscopy: Introduction, principle, flamesionization and dissociation in flames, types f flames used in AAS and flame spectra, variation of emission intensity with flame, metallic spectra in flame, flame ground, role of temperature on absorption emission and fluorescence Comparative study of flame emission spectroscopy (FES) and Atomic absorption spectroscopy (AAS). Instrumentation- line sources, source modulation in AAS. Application – Qualitative and Quantitative determination of alkali and alkaline earth metals.

8 Hours UNIT 6: Polarography: Principles of polarographic measurements, polarograms, Description and working of dropping mercury electrode. Current and concentrations relationship. Supporting electrolyte. Limiting current, half wave potential. Factors affecting half wave potential. Migration current, Residual current and diffusion current.Measurements of wave heights, Evaluation of quantitative results- Wave height-concentration method, internal standard (pilot) method and standard addition method. Modes of operation.

Rapid scan polarography,differential pulse polarography, sinusoidal a. c. polarography. Applications of polarography-Identification and determination of concentration of analyte. 6 Hours UNIT 7: Introduction to Chromatrography: Classification – Theory – distribution coefficient, rate of travel, retention time, adjusted retention time, retention volume, adjusted retention volume, net retention volume, specific retention volume, column capacity, separation number, peak capacity, shapes of chromatic peak, column efficiency, resolution, optimization of column performance, 3 Hours Numerical problems.

17Thin Layer Chromatography: Stationary phase, mobile phase, sample application, development techniques – evaluation and documentation, advantages and disadvantages, sintered layers used in TLC. 3 Hours UNIT 8: Gas Chromatography: Principle, carrier gas, stationery phase, instrumentation, sample injection, column detectors (TCD, FID, ECD, atomic emi+ssion detector), effect of temperature on retention, qualitative and quantitative analysis, pyrolysis GC, GC-MS, complementary and related techniques. 3 Hours High Performance Liquid Chromatography: Principle, instrumentation, column, sample injection, detectors (absorbance, refractive index, electrochemical), mobile phase selection, ion pair chromatography,HPLC-MS chromatography with chiral phases. 3 Hours TEXT BOOKS: 1. Spectrometric Identification of organic compounds, R. M.

Silverstein and W. P. Webster, 6th Edition, Wiley & Sons, 1999. 2. Instrumental Methods of Analysis, H. H. Willard, L. L.

Merritt and J. A. Dean and F. A.